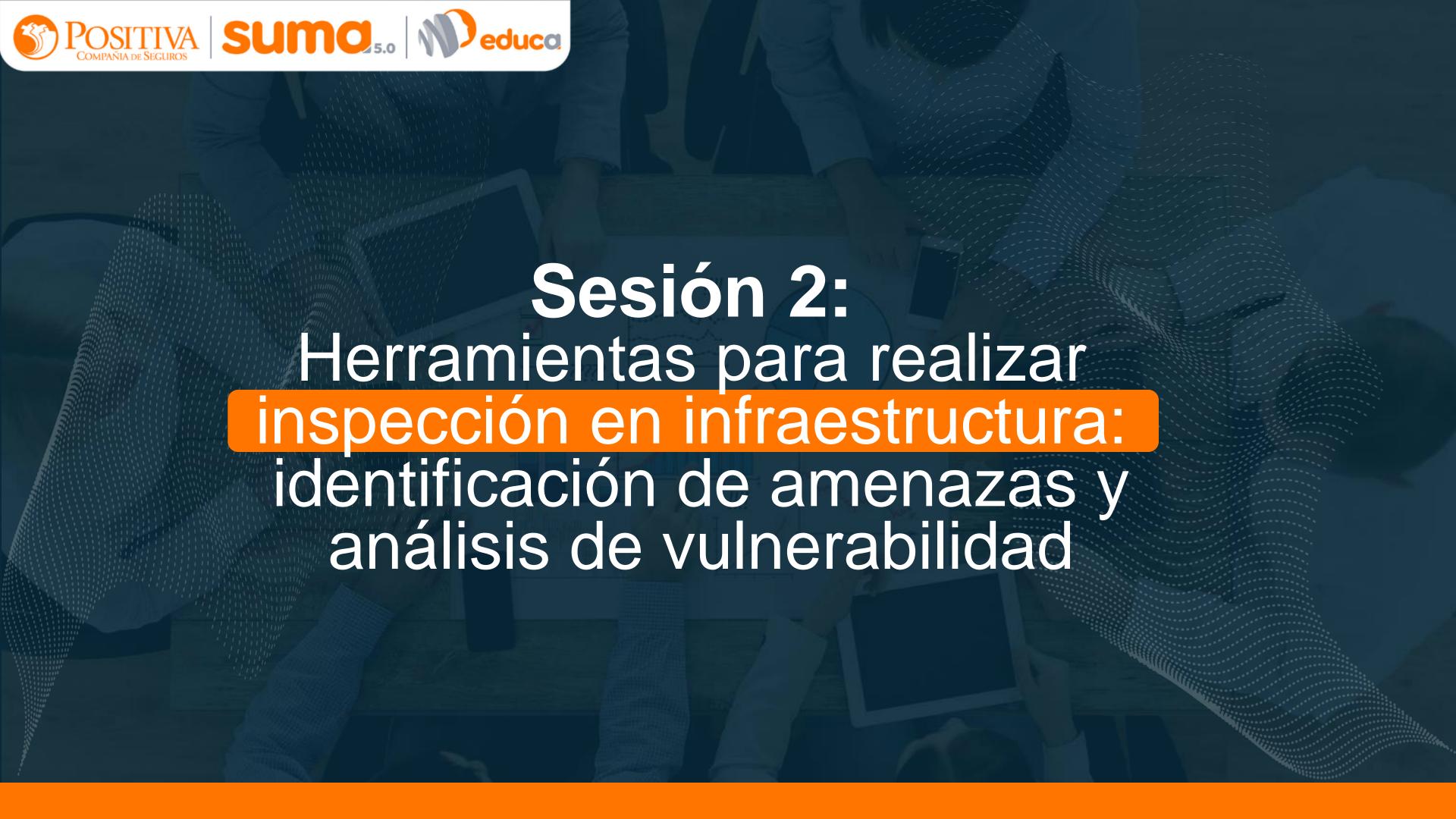








## Comunidad Nacional de Conocimiento en:


## GESTIÓN DEL RIESGO DE EMERGENCIAS Y DESASTRES

El cuidado de sí suma a tu vida















## **Experto Líder:**

Santiago Aristizábal Molina

## **Perfil Profesional:**

Empresario, miembro de juntas directivas de varias empresas, conferencista. Administrador de Empresas de la Universidad Externado, especialista en Gerencia de Salud Ocupacional y Magíster en Gestión del Riesgo y Desarrollo con estudios en ordenamiento territorial y respuesta ante emergencias y desastres. Por más de 19 años se ha desempeñado como asesor y Gerente General en E.S.S. S.A.S., donde colabora con importantes clientes en la implementación de estrategias para la gestión integral del riesgo ante emergencias y desastres.



saristizabal@emergencyess.com



310 8748024









## Ruta del conocimiento

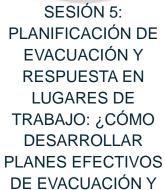
SESIÓN 2: HERRAMIENTAS PARA REALIZAR INSPECCIÓN EN **INFRAESTRUCTURA:** IDENTIFICACIÓN DE AMENAZAS Y ANÁLISIS DE **VULNERABILIDAD** 



SESIÓN 1: ORIENTACIÓN Y **HERRAMIENTAS** QUE FORTALECERÁN **EN LAS EMPRESAS** LAS CAPACIDADES EN EL MARCO DE LOS EFECTOS DEL FENÓMENO DEL NIÑO.

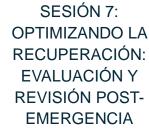


SESIÓN 3: UTILIZACIÓN DE **TECNOLOGÍAS Y** ANÁLISIS DE DATOS PARA LA GESTIÓN DEL RIESGO DE **EMERGENCIAS Y DESASTRES** 


SESIÓN 4: ¿CÓMO **IMPLEMENTAR** EL PROCESO DE CONOCIMIENTO DEL RIESGO. **EMERGENCIA Y DESASTRES** ANTE EL SGSST?






SESIÓN 6: ¿CÓMO REALIZAR **EJERCICIOS** PRÁCTICOS PARA **EVALUAR Y MEJORAR LA** PREPARACIÓN EN CASOS DE **EMERGENCIA?** 





RESPUESTA?





SESIÓN 8: TECNOLOGÍAS DE VANGUARDIA EN **GESTIÓN DEL RIESGO:** SIG, MONITOREO EN TIEMPO REAL, ALERTA TEMPRANA, NOTIFICACIÓN MASIVA Y COMUNICACIÓN DE MISIÓN CRÍTICA







SESIÓN 9: LECCIONES DE ÉXITO EN LA **GESTIÓN DEL RIESGO ANTE EMERGENCIAS: ESTUDIOS DE** CASO

SESIÓN 10: LA **IMPORTANCIA DE** LAS PRIMERAS **72 HORAS:** ¿CÓMO **SOBREVIVIR EN** UNA **EMERGENCIA?** 













## TABLA DE CONTENIDO



Tipos de infraestructuras críticas

Herramientas y tecnologías para la evaluación de inspección de infraestructuras

Métodos de riesgos



## Objetivo general

Abordar temas relevantes y prácticos que ayuden a los asistentes a comprender mejor los desafíos y las soluciones disponibles para inspeccionar infraestructura.





## Objetivos específicos



Recordar el marco normativo y la importancia de realizar inspecciones de infraestructura



Explorar herramientas para hacer la identificación de amenazas y análisis de vulnerabilidad



Dar a conocer las herramientas tecnológicas para la inspección de infraestructuras



GESTIÓN DEL RIESGO ANTE EMERGENCIAS Y DESASTRES

Y LA **Inspección** de infraestructura.

En la mitigación del riesgo





# Desastres más comunes en



Inundaciones: Debido a su ubicación geográfica y a las fuertes precipitaciones asociadas a fenómenos climáticos como el fenómeno de La Niña, Colombia es propensa a inundaciones repentinas que afectan a comunidades, cultivos, y la infraestructura.



Deslizamientos de tierra:
La topografía montañosa y
las lluvias intensas
aumentan el riesgo de
deslizamientos de tierra,
que pueden ser
especialmente mortales
en áreas urbanas y rurales.



Sismos: Colombia se encuentra en una zona sísmicamente activa debido a la interacción de las placas tectónicas, lo que aumenta el riesgo de terremotos que pueden causar daños significativos en edificaciones e infraestructuras.



Erupciones volcánicas:
El país alberga varios
volcanes activos, cuyas
erupciones pueden
generar flujos de lava,
cenizas volcánicas y
avalanchas, afectando las
poblaciones cercanas y la
infraestructura.



Incendios forestales: Las altas temperaturas, la sequía y la actividad humana aumentan el riesgo de incendios forestales, que pueden devastar ecosistemas naturales y áreas urbanas.









## Colombia: Plan de Acciones Anticipatorias, Preparación y Respuesta - EHP

Noviembre 2023

CIFRAS CLAVE DE PLANIFICACIÓN:

Fenómeno de El Niño

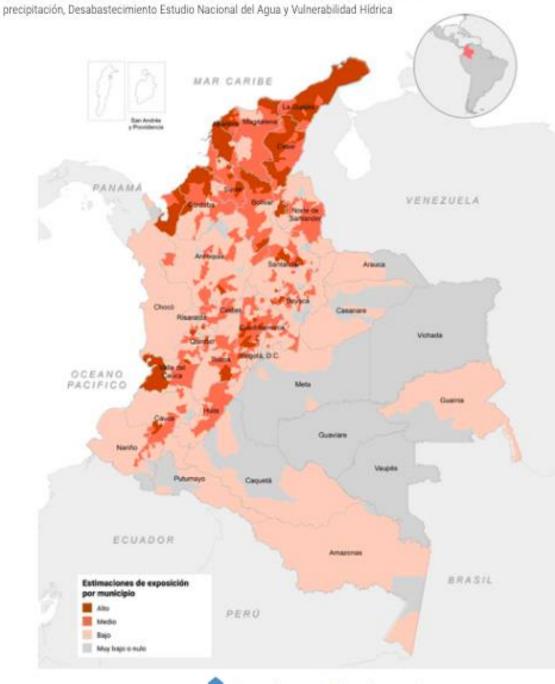
Personas expuestas en las zonas de alto, medio y bajo riesgo

9,3M

Personas expuestas en zona de alto riesgo

.:: en 124 de 16 departamentos 44

Departamentos afectados riesgo alto y medio Municipios afectados riesgo alto y medio


Financiamiento requerido Acción anticipatoria **☎** USD 5,4M Periodo de cobertura del plan de contingencia: Agosto 2023 - abril 2024 (9 meses)

Oficina de las Naciones Unidas para la Coordinación de **Asuntos Humanitarios** 

1 Para más información dirigirse a la página 5 - Regiones y personas afectadas.

#### Mapa 1. Estimación personas expuestas a riesgos entre 2023 y 2024

Fuentes: OCHA a partir de IDEAM. Indicadores utilizados: Rango de temperatura, Rango de

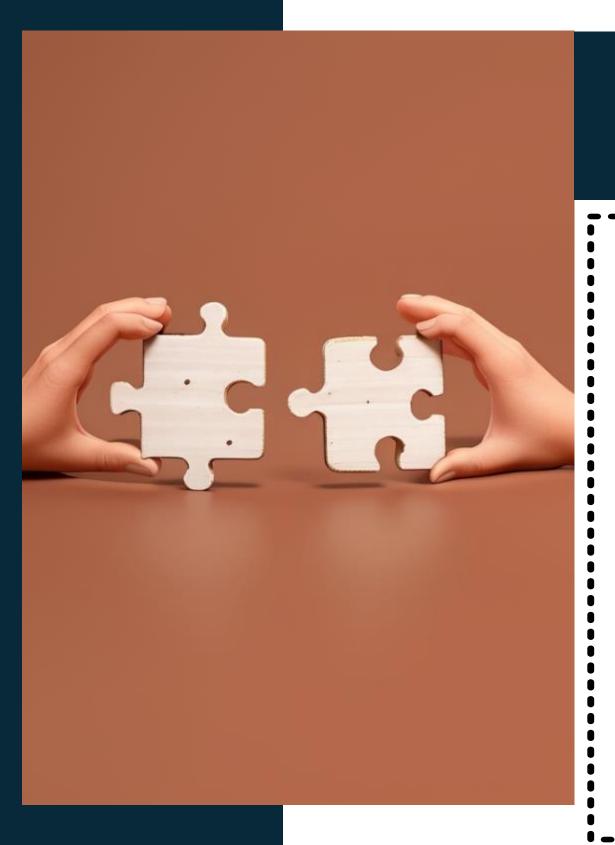


Consulte actualizaciones, alertas y recursos en https://response.reliefweb.int/es/colombia/sala-de-situacion/fenomeno-del-nino

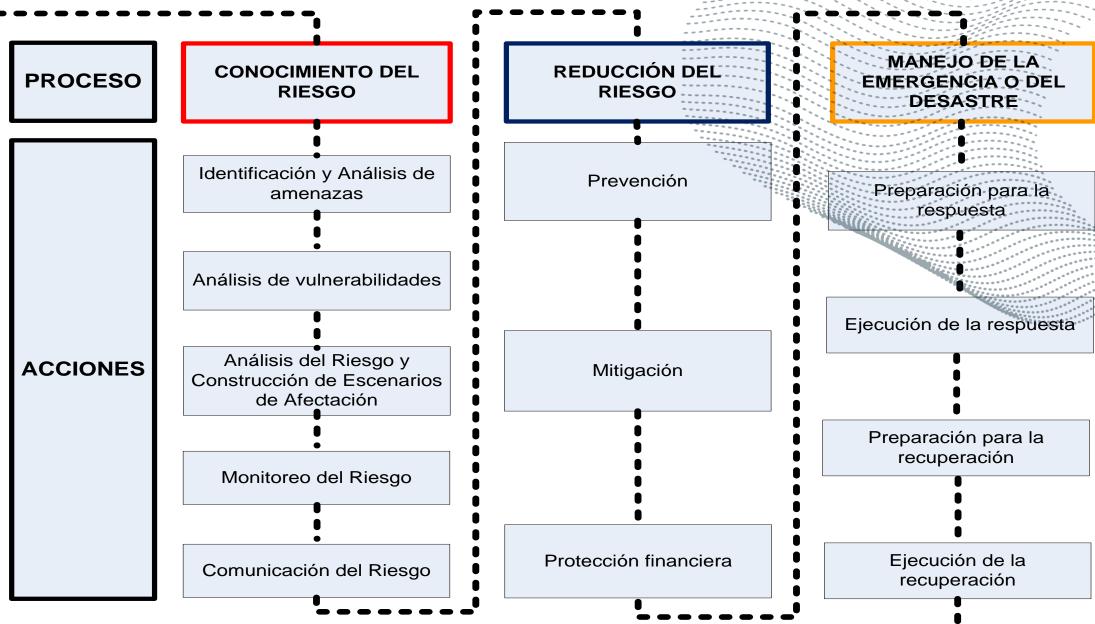







## DE LA INSPECCIÓN DE INFRAESTRUCTURA

## EN LA MITIGACIÓN DEL RIESGO










## Objetivos de la gestión del riesgo













https://portal.gestiondelriesgo.gov.co/Paginas/Estructura.aspx







#### www.portal.gestiondelriesgo.gov.co/ | Q



#### Objetivos y Funciones de la Unidad Nacional para la Gestión del Riesgo de Desastres

#### Objetivos General

La Unidad Nacional para la Gestión del Riesgo de Desastres dirige la implementación de la gestión del riesgo de desastres, atendiendo las políticas de desarrollo sostenible, y coordina el funcionamiento y el desarrollo continuo del sistema nacional para la prevención y atención de desastres - SNPAD.







## OBJETIVOS DE LA LEY 1523

Desarrollo de los objetivos de la Ley 1523 y Decreto 2157





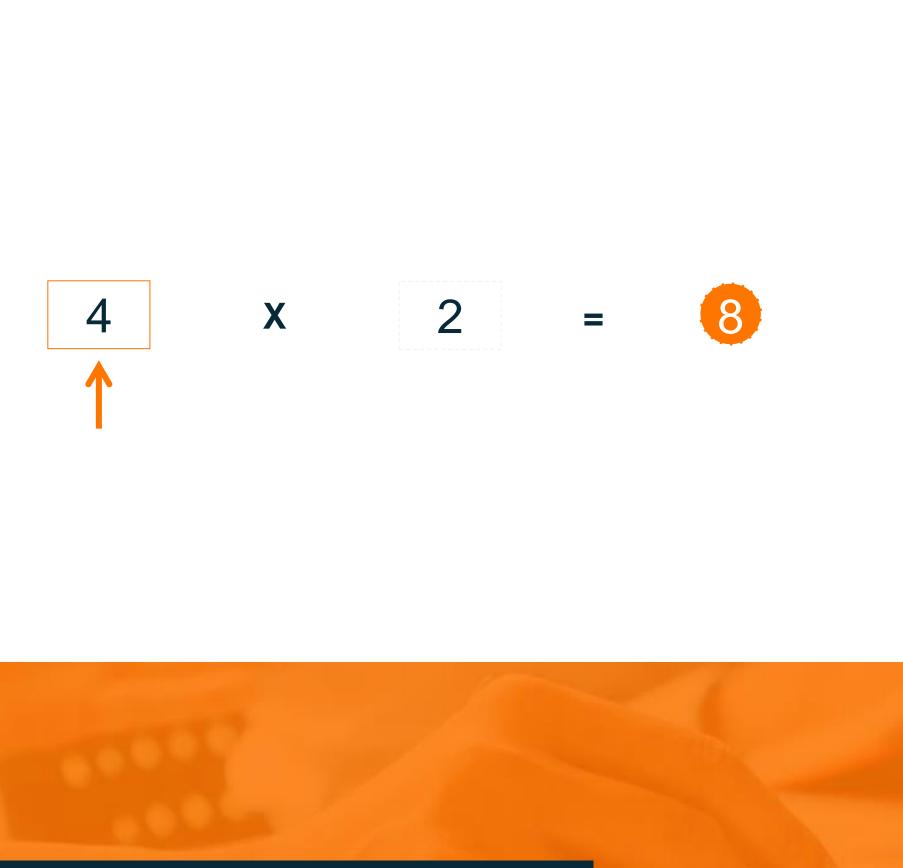






AMENAZA X VULNERABILIDAD = RIESGO

4


















X

















## MARCO LEGAL NORMATIVO

- Leyes y regulaciones relacionadas con la inspección de infraestructuras en Colombia.
- Normativas de **seguridad y** estándares de construcción vigentes.









## Normativas de seguridad y estándares de construcción vigentes.

En Colombia la gestión del riesgo ante emergencias y desastres está respaldada por una serie de leyes y regulaciones que establecen los marcos legales y normativos para la inspección de infraestructuras

- 1.Ley 1523 de 2012: Esta ley establece el Sistema Nacional de Gestión del Riesgo de Desastres (SNGRD) en Colombia. En el marco de esta ley, se promueve la identificación y evaluación de riesgos, así como la implementación de medidas para reducir la vulnerabilidad y fortalecer la resiliencia de las infraestructuras.
- 2.Ley 400 de 1997: Esta ley establece las disposiciones para la prevención y atención de desastres en Colombia. Define las responsabilidades de las autoridades locales, regionales y nacionales en la gestión del riesgo y establece los procedimientos para la declaratoria de emergencia y desastre.
- 3. Norma NSR-10 (Norma Colombiana de Diseño Sismo Resistente): Proporciona lineamientos técnicos para garantizar que las infraestructuras sean capaces de resistir los efectos de los sismos, reduciendo así el riesgo de colapso y pérdida de vidas humanas.
- 4. Normas técnicas específicas: Además de la NSR-10, existen diversas normas técnicas que regulan aspectos específicos de la construcción y la inspección de infraestructuras en Colombia.
- 5. Reglamento Colombiano de Construcción Sismo Resistente (RCCSR): Este reglamento complementa la NSR-10 y establece disposiciones adicionales para garantizar la seguridad sísmica de las edificaciones en Colombia.
- 6.Normas de seguridad y salud ocupacional: Colombia cuenta con regulaciones específicas relacionadas con la seguridad y salud ocupacional en el sector de la construcción.







## **MARCO NORMATIVO**

## ACTUAL

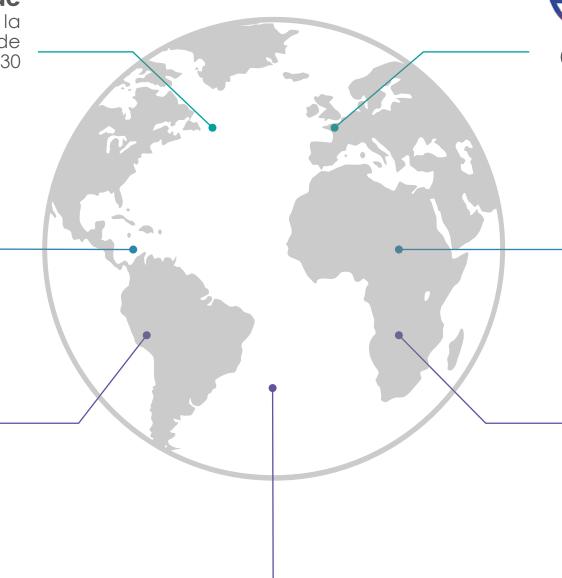


#### Marco de

Acción de Senday para la reducción de riesgo de desastres 2015-2030



ISO 22320.22301


Sistema de gestión: de emergencias y de la continuaidad del negocio



Ley 1523 de 2012

Política y Sistema Nacional para la Gestión del Riesgo de Desastres

Decreto 2157 de 2017 Elaboración PGRD entidades públicas y privadas.





**Objetivos** de Desarrollo sostenible 2015



Marco Normativo Andino para la gestión del riesgo de desastres



#### Decreto 1072 de 2015

Decreto Único Reglamentario del Sector Trabajo. Libro 2 -Parte 2 - Titulo 4- Capítulo 6Artículo 2.2.4.6.25 "Prevención, preparación y respuesta ante emergencias Resolución 0312 de 2019- Nuevos Estándares Mínimos del SG-SST-Gestión de Peligros y Riesgos

Gestión de Amenazas "Plan de Prevención, preparación y respuesta a emergencias'



Los dispuestos por el Instituto Distrital de Gestión del Riesgo y Cambio Climático (Bogotá) y los Consejos Municipales o Locales de Gestión del Riesgo de Desastres, según aplique.









## TIPOS DE INFRAESTRUCTURAS CRÍTICAS

- Identificación de infraestructuras críticas vulnerables a desastres naturales y otros riesgos.
- Ejemplos específicos de infraestructuras clave en Colombia y sus desafíos de inspección.









El punto "Tipos de infraestructuras críticas" es crucial en la gestión del riesgo ante emergencias y desastres, ya que permite identificar aquellas estructuras que son fundamentales para el funcionamiento de la sociedad y que podrían ser especialmente vulnerables a diferentes tipos de eventos adversos.



Infraestructuras de **transporte** 

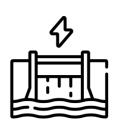


Infraestructuras **energéticas** 



Infraestructuras de **agua** y **saneamiento** 




Infraestructuras de **comunicaciones** 



Infraestructuras de **salud** 







Hidroeléctricas: Colombia cuenta con numerosas centrales hidroeléctricas que son vitales para la generación de energía. El desafío de inspeccionar estas infraestructuras radica en su ubicación remota y la necesidad de evaluar constantemente su integridad estructural debido a posibles riesgos sísmicos y condiciones climáticas extremas.



Red de carreteras: La extensa red vial de Colombia es esencial para el transporte terrestre de personas y mercancías. Sin embargo, las carreteras pueden ser vulnerables a deslizamientos de tierra, inundaciones y deterioro debido a la falta de mantenimiento adecuado, lo que requiere una inspección regular para garantizar su seguridad y funcionalidad.



Red de oleoductos y gasoductos: Colombia cuenta con importantes infraestructuras de transporte de petróleo y gas. Los desafíos de inspección incluyen la detección de fugas, la evaluación de la corrosión y el riesgo de ataques de sabotaje en áreas remotas o conflictivas.










## HERRAMIENTAS Y TECNOLOGÍAS

## INSPECCIÓN DE INFRAESTRUCTURAS

- Uso de drones para la evaluación visual de infraestructuras.
- Sensores remotos y sistemas de monitoreo en tiempo real.
- Escáneres láser terrestres (LIDAR)
- Aplicaciones móviles y software especializado para la recopilación y análisis de datos.







Uso de **drones** para la evaluación visual de infraestructuras.

Acceso a áreas de difícil acceso:

Evaluación detallada sin poner en riesgo la seguridad de los inspectores.

Captura de imágenes de alta resolución:

Capturar imágenes detalladas de la infraestructura desde múltiples ángulos Inspección en tiempo real:

5 Evaluación instantánea de la

Evaluación instantánea de la infraestructura y la capacidad de tomar decisiones rápidas

Reducción de costos y tiempos:

Puede reducir significativamente los costos y tiempos asociados con la evaluación de la infraestructura



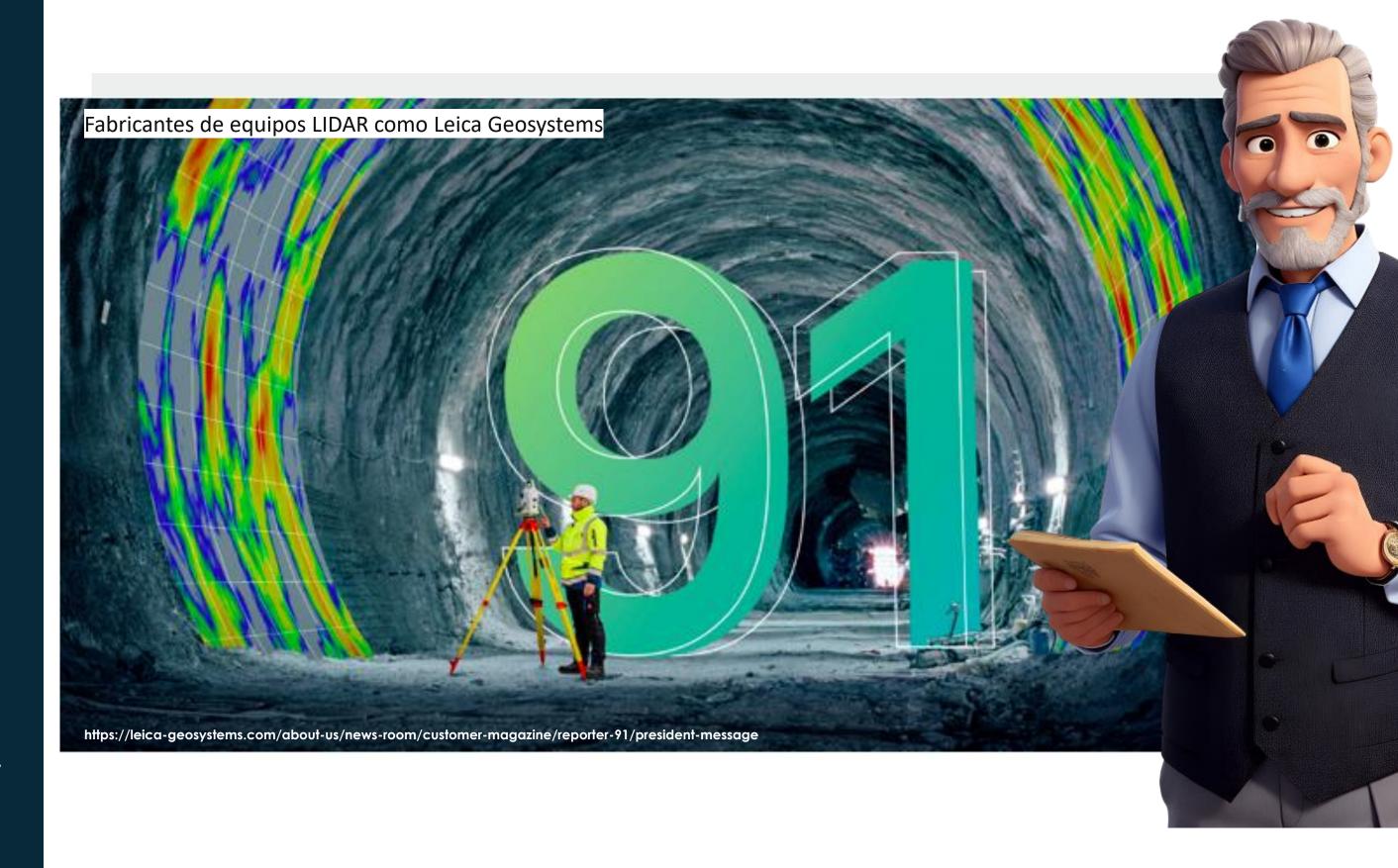






La utilización de drones equipados con cámaras y sensores permite realizar inspecciones visuales de infraestructuras de manera rápida y segura, especialmente en áreas de difícil acceso.











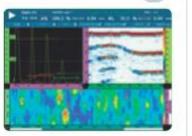

Escáneres láser terrestres (LIDAR): Estos dispositivos permiten obtener modelos tridimensionales precisos de infraestructuras, facilitando la detección de deformaciones o daños estructurales.







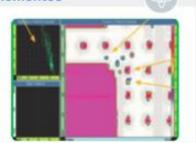





Soluciones para la inspección de la corrosión

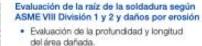
#### Ultrasonido multielementos (Phased Array)

#### Mapeo de alta resolución para la corrosión en grandes áreas

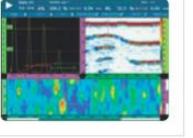

- Representación gráfica precisa del espesor de las piezas.
- Escaneo rápido de áreas muy extensas.
- · Fácil exportación de datos para análisis posteriores.

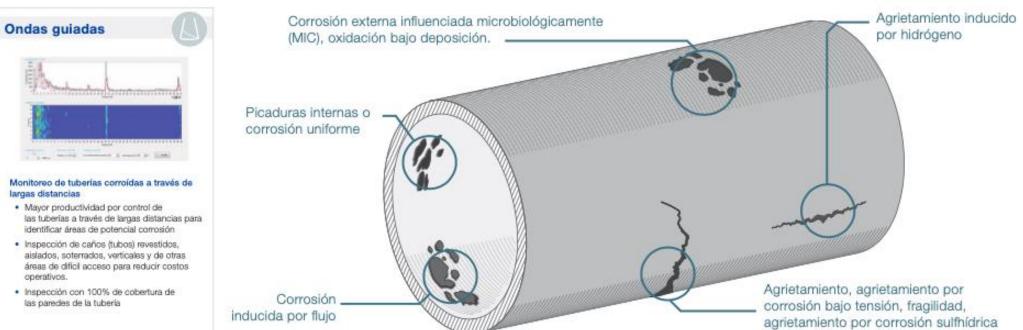


#### Corrientes de Foucault multielementos

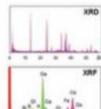

#### Mapeo de la corrosión debajo de superficies

- Detección de corrosión superficial como en el caso de grietas por corrosión bajo tensión (SCC) o corrosión superficial y subsuperficial
- . No hace falta eliminar la pintura; un menor número de pasos significa ahorro de tiempo.
- · Método ambientalmente amigable (no emplea compuestos químicos).





#### Difracción del tiempo de vuelo por ultrasonido






- · Rápida obtención de imágenes y un sencillo proceso de inspección.
- · No susceptible a la orientación interna del daño.





#### Fluorescencia y difracción de rayos X



#### Analizadores portátiles XRF y XRD

- La fluorescencia por rayos X (XRF) proporciona la composición química del material in situ para determinar si los componentes críticos están fabricados con las aleaciones correctas.
- La tecnología de difracción de rayos X (XRD). portátil permite identificar la mineralogía. de las incrustaciones por corrosión y sus causas principales para prevenir su progresión.

#### Ultrasonido convencional

#### Detección de corrosión bajo superficies irregulares mediante la tecnología EMAT

- Medición de la corrosión bajo superficies con incrustaciones externas de óxido.
- No requiere acoplante.
- · Puede utilizarse en superficies con altas temperaturas.



#### Ultrasonido convencional

#### Medición del espesor de pared restante

- Pueden usarse lineas de retardo especiales para superficies con temperaturas de hasta 260° C (500° F).
- Puede utilizarse un escáner codificado para generar representaciones B-scan codificadas del espesor de pared restante.
- Mediciones en tubos de calderas y en capas de incrustaciones internas de óxido.



#### Inspección visual remota



inspecciones visuales de soldaduras en áreas



para una toma de decisiones más rápida . Un videoscopio sensible permite efectuar

de dificil acceso.

- · Sus imágenes nítidas e intensas aumentan la probabilidad de detección y contribuyen a una inspección rápida y eficaz.
- Mayor capacidad de medición esterecscópica. 3D para el dimensionamiento de defectos in



**OLYMPUS** www.olympus-ims.com/es/corrosion-inspection-solutions//









Sensores de vibración y deformación

> Estos sensores pueden instalarse en estructuras como **puentes o edificios** para monitorear la vibración, la deformación y otros indicadores de la integridad estructural.

Sensores de temperatura y humedad

> Permiten monitorear condiciones ambientales que pueden afectar la infraestructura, como cambios en la temperatura o la humedad que podrían provocar corrosión o deterioro.

Sistemas de monitoreo sísmico

Estos sistemas utilizan una red de sensores para detectar y registrar movimientos sísmicos, lo que permite evaluar el riesgo de daños estructurales debido a terremotos u otros eventos sísmicos.

Redes de sensores inalámbricos

Estas redes utilizan nodos de sensores distribuidos en la infraestructura para recopilar datos en tiempo real sobre condiciones ambientales y el estado de la estructura, proporcionando una visión integral del rendimiento y la salud de la infraestructura.









#### Sensores de vibración y deformación

Estos sensores pueden instalarse en estructuras como puentes o edificios para monitorear la vibración, la deformación y otros indicadores de la integridad estructural.

#### Sensores de temperatura y humedad

Permiten monitorear condiciones ambientales que pueden afectar la infraestructura, como cambios en la temperatura o la humedad que podrían provocar corrosión o deterioro.

#### Sistemas de monitoreo sísmico

Estos sistemas utilizan una red de sensores para detectar y registrar movimientos sísmicos, lo que permite evaluar el riesgo de daños estructurales debido a terremotos u otros eventos sísmicos.

#### Redes de sensores inalámbricos

Estas redes utilizan nodos de sensores distribuidos en la infraestructura para recopilar datos en tiempo real sobre condiciones ambientales y el estado de la estructura, proporcionando una visión integral del rendimiento y la salud de la infraestructura.





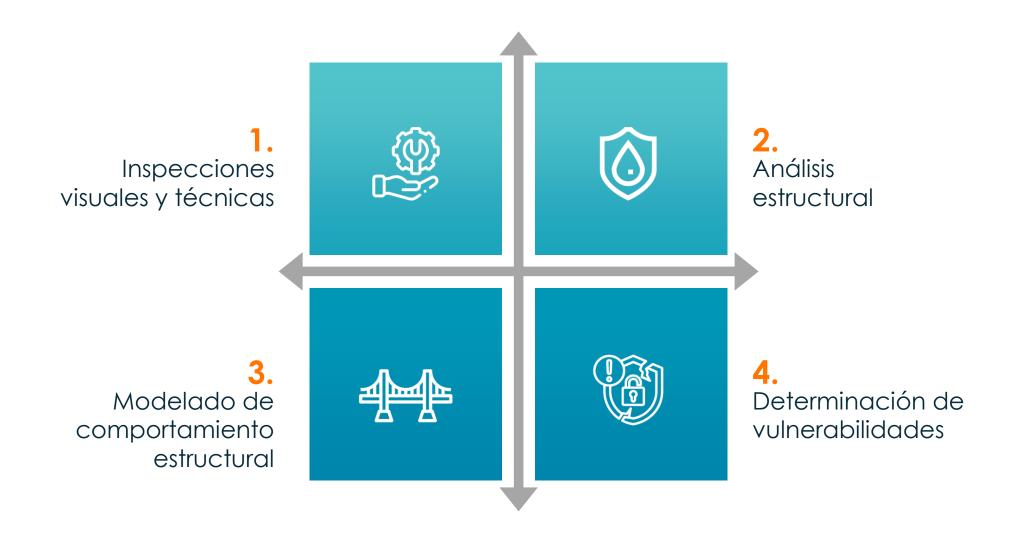




- Evaluación estructural y de vulnerabilidad.
- Análisis de amenazas naturales y antropogénicas.
- Evaluación de riesgos sísmicos, hidrológicos y meteorológicos












### Evaluación estructural y de vulnerabilidad.

La evaluación estructural y de vulnerabilidad se centra en determinar la capacidad de una infraestructura para resistir los efectos de un evento adverso y los posibles daños que podría sufrir.















## Análisis de amenazas naturales y antropogénicas

El análisis de amenazas naturales y antropogénicas se enfoca en identificar y evaluar los riesgos asociados con eventos que pueden causar daños a la infraestructura.

- Mapeo de amenazas: Identificación y cartografía de las diferentes amenazas naturales y antropogénicas que pueden afectar la zona donde se encuentra la infraestructura, como terremotos, inundaciones, deslizamientos de tierra, explosiones, entre otros.
- Análisis histórico de eventos: Estudio de eventos pasados para comprender su frecuencia, magnitud y impacto en la región, lo que permite evaluar la probabilidad de ocurrencia de eventos similares en el futuro.
- Modelado de amenazas: Utilización de modelos matemáticos y herramientas de simulación para predecir la ocurrencia y el impacto de eventos adversos, considerando factores como la geología, el clima, la topografía y la actividad humana.
- **Análisis de escenarios**: Desarrollo de escenarios hipotéticos de eventos adversos y evaluación de sus posibles consecuencias en términos de daños a la infraestructura y riesgos para la población.









## Evaluación de riesgos sísmicos, hidrológicos y meteorológicos

La evaluación de riesgos sísmicos, hidrológicos y meteorológicos se centra en entender los peligros específicos asociados con estos eventos y sus posibles impactos en la infraestructura.

01

03

04

Riesgos sísmicos

mediante la consideración de factores como la actividad sísmica histórica, la geología regional y la vulnerabilidad de las estructuras.

#### Riesgos hidrológicos

mediante la modelización de caudales, niveles de agua y escorrentía superficial.

#### Riesgos meteorológicos

mediante la consideración de factores como la climatología local, los patrones de precipitación y la exposición de la infraestructura.

#### Integración de riesgos multiples

Evaluación de manera conjunta para evaluar el riesgo total y desarrollar estrategias de mitigación integrales.









Casos de estudio y **mejores** prácticas

Desafíos y **oportunidades** futuras

> Estrategias de acción y recomendaciones finales







## Casos de estudio y mejores prácticas

Experiencias exitosas de inspección de infraestructuras en Colombia

- Caso de la inspección de puentes utilizando drones en el departamento de Antioquia.
- Experiencia de inspección de represas hidroeléctricas en el valle del Cauca mediante tecnologías de monitoreo remoto.

Lecciones aprendidas de desastres pasados y cómo han influido en las estrategias de inspección

- Impacto del deslizamiento de Mocoa en 2017 en la infraestructura de la región y las medidas adoptadas para mejorar la inspección y vigilancia de áreas vulnerables.
- Lecciones de los **terremotos pasados en la región andina** y cómo han influenciado las normativas de construcción y los programas de inspección.





### Desafíos y oportunidades futuras

Obstáculos comunes en la implementación de programas de inspección de infraestructuras

- Escasez de personal capacitado y recursos técnicos para llevar a cabo inspecciones exhaustivas y regulares.
- Dificultades logísticas y de acceso a áreas remotas o de difícil acceso.

Avances tecnológicos y **tendencias emergentes** en el campo de la gestión del riesgo y la inspección de infraestructuras

- Uso de inteligencia artificial y análisis de datos para optimizar la detección de anomalías en infraestructuras.
- Integración de sensores IoT (Internet de las cosas) para el **monitoreo en tiempo real** de la salud estructural de las edificaciones.





## **Estrategias de acción** y recomendaciones finales

Pasos prácticos para mejorar la capacidad de inspección de infraestructuras

- Implementar programas de capacitación continua para personal de inspección en nuevas tecnologías y mejores prácticas.
- Establecer alianzas estratégicas con instituciones académicas y empresas privadas para compartir recursos y conocimientos.

Recomendaciones para la colaboración entre instituciones públicas y privadas en la gestión del riesgo

- Fomentar la colaboración público-privada en la implementación de programas de inspección y mantenimiento de infraestructuras críticas.
- Establecer mecanismos de **coordinación y comunicación efectiva entre entidades**gubernamentales y empresas del sector privado.



Si el elemento expuesto no presenta vulnerabilidad frente a la amenaza, es decir, si este es capaz de anticipar, resistir, responder y recuperarse, entonces la amenaza no genera riesgos.





### Bibliografía

- http://portal.gestiondelriesgo.gov.co
- https://www.idiger.gov.co
- https://es.linkedin.com/pulse/inteligencia-artificial-y-drones-en-colombia-2024-juan-alvarez-33fce
- https://www.unenvironment.org/resources/report/global-waste-management-outlook
- https://www.olympus-ims.com/es/insight/ultrasonic-drone-inspections-take-ndt-safety-to-new-heights/
- https://www.cepal.org/en/publications/45374-guidelines-development-municipal-solid-waste-management-plans-latin-america-and



















Recuerda que POSITIVA tiene para ti:

# Posipedia

https://posipedia.com.co/





Cursos virtuales



OVAS



Artículos



Guías



Audios

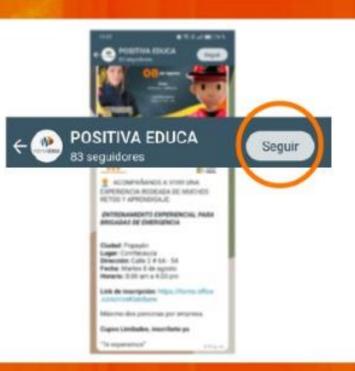


Mailings



Juegos digitales




Videos



Escanea el Código QR con tu celular.



Síguenos y entérate de todas las actualizaciones de nuestro Plan Nacional de Educación.



iRecuerda!

El canal lo encuentras en la pestaña de Novedades de tu Whatsapp









## ISIGUENOS EN NUESTRA COMUNIDAD EDUCATIVA!





Escanea el código QR con tu celular